
CS 251: Data Structures and Algorithms

Figure 1: Formulas

Big-O

Big-O: f(n) ∈ O
(
g(n)

)
⇐⇒

∃ c > 0, ∃ n0 > 0 : ∀n ≥ n0, 0 ≤ f(n) ≤ c g(n).

Big-Ω: f(n) ∈ Ω(g(n)),
0 ≤ c · g(n) ≤ f(n)

Big-Θ: f(n) ∈ Θ(g(n)),
0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n)

Figure 2: Big-O curve

Arrays

Access: Θ(1), Insert: Θ(1) (with tail) Θ(n) (no tail).

Resize and space of resize: Θ(n)

Binary trees

Max nodes in BT (total in complete BT) = 2h+1 − 1. Leave
nodes = 2h

Figure 3: Full BT and Complete BT

→ Full BT: Each node has none or two children.

→ Complete BT: All levels full until last (left to right).

Balanced BT: At every node the height of the left and right
subtree differs by at most 1:
2h ≤ n → h ≤ log2 n ∴ h ∈ O(log(n)), where n is the
number of nodes.

Balanced BT Insertions, Searches & Deletions: O(log(n))

Binary Heap

Complete binary tree ∴ h ∈ Θ(log(n)).

Insertions & Deletions: O(log(n)) through single path.

→ Left: 2i + 1, Right: 2i + 2.

→ Parent:
⌊

i−1
2

⌋
.

Max heap (max on top). Min heap (min on top).

Insertions enter in complete BT order and then adjust (sift
up).

Single insert is O log(n) ∴ n inserts ∈ O(n log(n))

Heapify

Sift down on all nodes in an array from [0,
⌊

n
2

⌋
− 1]

Heap build: O(n)

Heap sort

Call Heapify (O(n)) and then swap the root with the last
item and fix the heap ("lock" the last element after swap).

Figure 4: Heap sort example



Quick sort

Not stable and pivot selection is arbitrary.

Best case (O(n log(n)))→ even partitions.

Worst case (O(n2))→ one partition has n − 1 elements.

Figure 5: Quick sort; i (return) is moved when comparison is
lower and swaps at j (comparison index)

Counting sort decision tree

Leaves are n! permutations of the array (all possibilities).

Internal nodes are the conditional checks.

As full BT will be 2h leaves ∴ 2h ≥ n!

h ≥ log2 n! ⇒ h ≥ n log2 n ∴ h ∈ O(n log(n))

Counting sort

Array → Freq. array → Cm. frq. array → Resulting array
filled from cm. frq. array backwards.

Stable, bad with large max value of an array.

Runtime & Space: O(n + k), where n: array size; k: max
value of array (freq. arr.).

Bucket sort

Worst case O(n2) → unsorted un-uniform distribution.

Best case O(n) → one element per bucket or all sorted in
one bucket.

Avg. case O(n + n2

k + k)

If there is one key per bucket (i.e. there exists a bucket for
any key) then, O(n + k), where n: elements in array; k:
buckets.

Extra work comes from sorting within each bucket.

Better for uniform distributions: fits things equally.

Radix sort

Sorting through LSD to MSD using a stable sorting algo-
rithm (e.g. counting sort).

Runtime: O(d(n+k)), where d: digits; n+k: counting sort.

Space: O(n + k)

Using bucket sort with binary digits, create 2 buckets for 2
keys (1 and 0).

If there are constant lengths of digits then O(n) is possible.

E.g. O(d(n + 2)) ∈ O(n) if there are constant lenths of
binary numbers.

Polynomial rolling hash

Where S: string of length m; a: multiplier for polynomial.

H(S, a) = s0am−1 + s1am−2 + ... + sm−1a0 =
m−1∑
i=0

sia
m−i−1

If using a fixed sized window m then do rolling updates on
S: H1 = (H0 − sold · am−old) × a + snew

Hashing functions

Division method: h(k) = k mod m (avoid 2P and 10P = m),
where m: size of hash table.

Multiplication method: h(k) = ⌊m(kA mod m)⌋ (A ≈√
5−1
2 ; m is not critical)

Aim to have keys be distributed uniformly (no clusters).

Collision strategies

Under the Simple Uniform Hashing Assumption

→ Average number of keys per bucket (Load Factor): α = n
m

→ n ∈ O(m) ∴ α ∈ O(1), n: keys, m: buckets.
Chaining

Figure 6: Chaining collision management

Worst case O(n): traversing all items in the table.

Runtime Θ(1 + LengthOfChain) = Θ(1 + n
m ).



Open addressing

Probing sequence for h(k, i) ⇒ h(k, 0), h(k, 1), ..., h(k, m−1)

→ Linear: h(k, i) = (h(k) + i) mod m.

→ Quadratic: h(k, i) = (h(k) + c1i + c2i2) mod m, where c:
coefficients chosen.

→ Double hashing: h(k, i) = (h(k) + ih1(k)) mod m.

Element deletion will mess up the hash (offset from probing
impossible to reach).

When load factor is too high there is a cluster overhead.

Insertions probe: 1
1−α

Successful search probes: 1
α ln( 1

1−α )

Unsuccessful search probes: 1
1−α

Rehashing

Chaining:

→ Goal: α constant.

→ Double m when α ≥ 8.

→ Halve m when α ≤ 2.

Open addressing:

→ Goal: α ≤ 1
2 .

→ Double m when α ≥ 1
2 .

→ Halve m when α ≤ 1
8 .

B-trees

The order (num. of children) is m, determined from m − 1
keys in the parent.

Height: h ∈ O(logm n).

B-trees are always "complete"––all levels full.

Insertions do not increase heigh unless m order limit is
reached in the root.

Figure 7: 2-3 B-tree inser-
tion Figure 8: B-tree types

Figure 9: B-tree deletion with high redux

Red-Black trees

Figure 10: B-tree to R-B
tree conversion

Root and null links are
black.

Red parents have black
children.

All paths, excluding null
links, have the same num-
ber of black nodes h ∈
O(log(n)) (black height).

Figure 11: R-B Tree operations

Black height increase in an RB-tree, correlates to a height
increase in a 4-node b-tree (2-3-4 tree).

Undirected graphs

Handshake theorem:
∑

v∈V deg(v) = 2 · |E|

Edge count: |E| ≤ |V |(|V |−1)
2 , considering |V | − 1 edges on

V edges.

Complete graph has vertexes with degree |V | − 1 ∴ |E| =
|V |(|V |−1))

2

Paths and cycles

Simple path/cycle have no repeated edges/vertices.

Euler path visits all edges
once.

Euler cycle is a Euler path
that starts/ends on the
same v.

Hamiltonian path visits all
vertices once.

Hamiltonian cycle is a H.
path that starts/ends on
teh same v.

Length is the number of edges.

Edge representations

Edge list

List: (u, v), (u, w), (v, x), ...



Adding edge: O(1)

Space, Adj. vertex check, & Adj. iteration: O(|E|)

Adjacency matrix

Cells are 1 or 0, and Ak gives the num. of k-length paths
between vertices.

Edges go i → j

Figure 12: Adjacency matrix

Space: O(|V |2)

Adj. iteration: O(|V |)

Adding edge & adj. vertex check: O(1)

Adjacency list

Figure 13: Adjacency list

Space: O(|V | + |E|)

Adding edge: O(1)

Adj. vertex check & Adj. iteration: O(deg(V ))

Types of graphs

Connected graphs have paths for all pairs of vertices.

Spanning subgraph has all V in G

Trees are undirected, connected, and acyclic graphs.

Forests are collections of trees (acyclic).

Spanning tree are spanning subgraphs of G that are trees.

Graph characteristics

Sparse graphs → |E| << |V |2 (use lists)

Dense graphs → |E| ≈ |V |2 (use matrices)

Strong connectivity is that every v is connected to every
other v ∈ V (with reflexive, symmetric, and transitive prop-
erties).

Test strong conn. by running DFS on G and G′ (inverted
pointing), if all nodes are visited then there is strong conn.

Depth-first search (DFS)

Traverses |E| twice (2 · |E|) by backtracking.

If non-visited node remains, then G is not connected.

Runtime: O(|V | + |E|) (adj. list)

Breath-first search (BFS)

Traverses all V and E.

Runtime: O(|V | + |E|)

Terminates when the queue is empty or all vertices are dis-
covered.

Transitive closure

G∗ shows the paths where v ̸= u has a directed path (u, v)

Warshall uses 1s in diagonal if self loops or cycles.

Floyd-Warshall algorithm builds G∗ matrix.

Rk to denote progression from k = −1.



m[i][j] = g[i][j] || (g[i][k] && g[k][k]);

final = init || (indirect path i->k->j);

Space: O(|V |2) (matrix)

Runtime: O(|V |3) (i, j, k)

Topological ordering

Directed acyclic graph (DAG): digraph with no cycles.

Numbering v1, ..., vn such that every (vi, vj) is i < j.

By inspection, remove nodes with indeg(0) in order.

Runtime: O(V + E) using DFS, O(1) for insertion lists.

Dijkstra’s algorithm

Greedy shortest path, that uses min-heap for inspected
nodes and their weights.

→ Removes when discovered, updated when finding path
with lesser cost.

Min-heap removal: O(|E| log(|V |))

Update: O(log(|V |))

Runtime: O((|V | + |E|) log(|V |))

Bellman-Ford algorithm

Shortest path with negative weights, that iterates V − 1
times +1 for negative cycle checking.

Checks every node, and updates neighbors weights until no
nodes are updated.

Runtime: O(|V | · |E|)

MST & Kruskal’s MST algorithm

Minimum spanning trees (MSTs) are spanning trees with
minimal weights.

→ Splitting vertices into two groups, the min weight edge is
part of the MST of G.

→ On cycles the biggest weight is never in the MST of G.

Kruskal’s algorithm finds the MST by using Union-Find on
nodes at increasing weights.

Uses min-heap to obtain the weights in increasing order.

Runtime: O(|E| log(|V |))

Union-find

Quick-Find merges by grouping nodes under a "parent" node
label, and finds by an array lookup.



Quick-Union, using path compression, joins nodes into their
corresponding tree.

Union(6, 5) will look up to the root of 6 in Find(6):
6 → 2 → 1 → 3 and will attach all intermediaries directly to
the root (3). Does the same with Find(5) 5 → 4 and joins
the smaller tree as a child of the bigger tree (4 child of 3).

Quick-Find runtime: O(tree_depth) or worst degen O(n)

Quick-Union runtime: O(1) and path comp: O(α(n))

Brute-force string matching

Takes a substring and compares it contiguously.

Runtime: O(m) · O(n) ∈ O(nm)

Boyer-Moore algorithm

T (text) and backwards P (pattern) comparison.

Creates a numeric rep. for the occurrence of each char, and
then compares and moves at offset: m − min(j, 1 + L[c]).

Number of comparisons are the total times the last char is
compared + offsets (example has 15).

Tries

Prefix/suffix tries contain all possible combinations.

For a single string: O(|w|)

For PATRICIA tries, a node is redundant and can be
grouped if it’s not the root and has one child (include $).

Huffman

Greedy, min-heap, that encodes high freq. with short code-
words.

Runtime: O(n log(n)).

K-d trees & quadtrees

K-dimensions where non-leaf nodes split into half-spaces.
Each level alternates dimensions (e.g. 0:x, 1:y, 2:x).

Quadtrees split into 4 spaces (NW, NE, SW, SE).

Insertions use level discriminant to locate parent child nil
(e.g. Insert(70, 50) uses 70 for x levels, and 50 for y
levels).

Deletions swap node with minimum value of discriminant at
the level in the right subtree (if the min node has children
then the same process is done for that node). Leaf is deleted.

The expected depth of the quadtree at each level: 4D ≈ n ∴
D ≈ 1

2 log2(n), where n: num. points.

Range query result is determined by square query s inter-
section with square region: UpperBound

2D = UpperBound
n1/2 .

s
1/n1/2 = s · n1/2 ∴ s2 · n are the points intersecting (leaf
nodes).


